The Parameterized Complexity of the Rectangle Stabbing Problem and Its Variants

نویسندگان

  • Michael Dom
  • Somnath Sikdar
چکیده

We study an NP-complete geometric covering problem called d-Dimensional Rectangle Stabbing, where, given a set of axis-parallel d-dimensional hyperrectangles, a set of axis-parallel (d − 1)-dimensional hyperplanes and a positive integer k, the question is whether one can select at most k of the hyperplanes such that every hyperrectangle is intersected by at least one of these hyperplanes. This problem is wellstudied from the approximation point of view, while its parameterized complexity remained unexplored so far. Here we show, by giving a nontrivial reduction from a problem called Multicolored Clique, that for d ≥ 3 the problem is W[1]-hard with respect to the parameter k. For the case d = 2, whose parameterized complexity is still open, we consider several natural restrictions and show them to be fixed-parameter tractable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameterized Complexity of Stabbing Rectangles and Squares in the Plane

The NP-complete geometric covering problem Rectangle Stabbing is defined as follows: Given a set of horizontal and vertical lines in the plane, a set of rectangles in the plane, and a positive integer k, select at most k of the lines such that every rectangle is intersected by at least one of the selected lines. While it is known that the problem can be approximated in polynomial time with a fa...

متن کامل

Approximation Algorithms for Rectangle Stabbing and Interval Stabbing Problems

In the weighted rectangle stabbing problem we are given a grid in ]R2 consisting of columns and rows each having a positive integral weight, and a set of closed axis-parallel rectangles each having a positive integral demand. The rectangles are placed arbitrarily in the grid with the only assumption that each rectangle is intersected by at least one column and at least one row. The objective is...

متن کامل

Design of Persian Karbandi: The Problem of Dividing the Base from a Mathematical Viewpoint

Karbandi is the structure of a kind of roofing in Persian architecture. One of the main issues related to the design of karbandi is that, due to its geometrical structure, it is not possible to design any desired karbandi on a given base. Therefore, it is necessary for the designer to be able to discern the proper karbandi for a given base. The most critical stage in designing a karbandi is whe...

متن کامل

Constan Ratio Approximation Algorithms for the Rectangle Stabbing Problem and the Rectilinear Partitioning Problem

We provide constant ratio approximation algorithms for two NP-hard problems, the rectangle stabbing problem and the rectilinear partitioning problem. In the rectangle stabbing problem, we are given a set of rectangles in two-dimensional space, with the objective of stabbing all rectangles with the minimum number of lines parallel to the x and y axes. We provide a 2-approximation algorithm, whil...

متن کامل

Approximation Algorithms for Capacitated Rectangle Stabbing

In the rectangle stabbing problem we are given a set of axis parallel rectangles and a set of horizontal and vertical lines, and our goal is to find a minimum size subset of lines that intersect all the rectangles. In this paper we study the capacitated version of this problem in which the input includes an integral capacity for each line. The capacity of a line bounds the number of rectangles ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008